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Abstract. A theory of bipolaron states in a spherical parabolic potential well is developed applying
the Feynman variational principle. The basic parameters of the bipolaron ground state (the binding
energy, the number of phonons in the bipolaron cloud, and the bipolaron radius) are studied as
functions of the radiusR of the potential well. Analytical expressions for bipolaron parameters
are obtained at large and small sizes of the quantum well. It is shown that atR � 1 (whereR is
expressed in units of the polaron radius), the influence of confinement on the bipolaron binding
energyW(R) is described by the function∼1/R2, while at small sizes this influence is more
complicated:W(R) passes through a maximum in the regionR < 1.

1. Introduction

The bipolaron problem has been widely discussed for a long time; see e.g. references [1–9].
A detailed outline of this subject is presented in the recent review [10]. The complexity of the
polaron problem is enhanced by the fact that the possibility of the existence of the bipolaron
is not obvious. The dimensionless Fröhlich constant which characterizes, in particular, the
phonon-mediated attraction between two electrons:

α = e2

2h̄ω0

(
1

ε∞
− 1

ε0

)(
2mω0

h̄

)1/2

(1)

(whereω0 is the LO phonon frequency,m is the electron band mass,ε0 andε∞ are static
and optical dielectric constants, respectively), and the dimensionless parameterU which
characterizes the Coulomb repulsion between them:

U = e2(mω0/h̄)
1/2

ε∞h̄ω0
(2)
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are related to each other by the equation [10]

U =
√

2α

1− η (3)

whereη = ε∞/ε0. Due to the fact thatε0 > ε∞, the inequalityU >
√

2α is obvious.
From this inequality, generally speaking, the domination of repulsion follows. Indeed,
when the distance between two electrons|r2 − r1| is large in comparison with the polaron
radiusRp = (h̄/mω0)

1/2, such that each electron moves in a separate potential well, the
Coulomb repulsion obviously exceeds the phonon-mediated attraction. In the opposite case
|r2 − r1| � Rp, the repulsion also exceeds the attraction, since the Coulomb potential diverges
when |r2 − r1| → 0. Only at intermediate distances,|r2 − r1| ∼ Rp, at largeα, may the
attraction exceed the repulsion. Therefore, when two electrons are confined together in a
potential well, one can expect the conditions of the bipolaron stability to be improved at
relevant sizesR of the well, because confinement turns off the region|r2 − r1| > R, where
repulsion between two electrons dominates.

Two new circumstances have stimulated the bipolaron theory: the progress in the tech-
nology of fabrication of mesoscopic nanostructures such as quasi-2D (quantum wells and
superlattices), quasi-1D (quantum wires), and quasi-0D (quantum dots) structures, and the
advancing of the hypothesis that bipolaron excitations might play a role in processes occurring
in the high-temperature superconductors. The present research has been motivated also by the
recent advances in the creation of nanocrystals with a strong ionic coupling [11].

The basic bipolaron parameters are the following. The bipolaron stability region is
determined by the inequalityW > 0 for the bipolaron binding energy:

W ≡ 2Ep− Ebip. (4)

HereEp andEbip are the free-polaron and bipolaron ground-state energies, respectively. The
functionsαc(η, R) andηc(α, R), describing the boundaries of the bipolaron stability region,
are found from the equation

W(α, η, R) = 0. (5)

WhenR ∼ Rp, with the result that two electrons are confined near each other independently
of the sign ofW , we can attach a specific meaning to the inequalityW > 0 by considering an
array ofN0 quantum dots which are separated by high energy barriers and containN electrons
(N < N0). In thermodynamical equilibrium, the ratio of the number of quantum dots with
one electron (polarons) to the number of those with two electrons (bipolarons) is equal to
exp(−W/kBT ), so atW > 0, the number of bipolarons is larger than the number of polarons.

According to different theoretical treatments [4–10] and for intuitive reasons, the bipolaron
binding energy is an increasing function ofα and a decreasing function ofη. It will be shown
that the functionηc(α, R) starts fromηc = 0 atα = αmin(R) 6= 0, grows with increasingα,
and tends to the upper limitηmax atα→∞. The bipolaron stability region is then determined
by the inequalitiesα > αmin(R) and 06 η < ηc(α, R).

Let us adduce typical values of the parametersαmin,3D and ηmax,3D of the bulk (3D)
bipolaron: αmin,3D = 6.8 andηmax,3D = 0.14 were found by Verbist, Peeters, and Devreese
[12, 13] and by Verbist, Smondyrev, Peeters, and Devreese [14]. Adamowski [7] obtained
αmin,3D = 7.3 andηmax,3D = 0.14.

The bipolaron theory developed for pure 2D [15, 16] and 1D [16] models shows that the
bipolaron stability region broadens when the dimensionality is reduced. For these systems,
the following parameters were obtained:αmin,2D = 2.9, ηmax,2D = 0.158 (reference [15]);
αmin,1D = 0.9, ηmax,1D = 0.764 (reference [17]).
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Bipolaron states were investigated in a quantum well [18,19] and in a quantum wire [20]
as functions of the characteristic size of the system: the width and the radius, respectively.
Although the polaron theory for the quantum dot is developed in detail in references [21–24],
publications on bipolarons in quantum dots, to the best of our knowledge, are lacking, except
the recent reference [25], the results of which are analysed in section 5.

The goal of the present investigation is to determine the region of bipolaron stability
and to study basic parameters characterizing the bipolaron ground state as a function of the
confinement for quantum dots, where a transition from 3D to 0D is realized. The Feynman
variational method is used in order to study the problem for arbitrary values ofα.

The paper is organized as follows. In section 2, general formulae for parameters of a
bipolaron in the spherical confinement potential are deduced. In section 3, the basic parameters
of the bipolaron ground state are obtained. Limiting cases of strong and weak confinement are
studied in detail. The numerical and analytical results obtained are discussed in section 4.

2. General theory

We analyse the bipolaron problem taking into account both the electron–phonon interaction
and the Coulomb repulsion between two electrons confined in a quantum dot. The Lagrange
function of the system is

L =
3∑
i=1

∑
n=1,2

mẋ2
i,n

2
−
∑
n=1,2

U(rn)− e2

ε∞ |r1− r2|

+
1

2

∑
k

(ẇ2
k − ω2

0w
2
k)−

∑
n=1,2

∑
k

γk(rn)wk (6)

wherern(x1n, . . . , x3n) is the radius vector of thenth electron (n = 1, 2),U(r) is the potential
energy of an electron in the potential well,wk are the normal coordinates of longitudinal
optical (LO) phonon modes. The amplitudes of the electron–phonon interaction are taken in
the Fr̈ohlich form:

γk(r) = 2

√
2πh̄ω0α

V

ω0

k

(
h̄

2mω0

)1/4

exp(ik · r) (7)

whereV is the volume of the system. In this paper, the so-called 3D phonon approximation
is used, according to which the interaction of an electron with both bulk-like and interface
phonons is replaced by that with 3D phonons. This often-used approach is adequate because
any integral polaron or bipolaron effect, resulting from a summation over all phonon modes,
appears to be only weakly dependent on the details of the phonon spectra. It should also be
mentioned that the system under consideration simulates realistic structures with relatively
smooth interface barriers, where interface-like phonon modes can appear, which are smoothly
distributed in space rather than localized near a sharp boundary as is the case for interface
modes.

For studying the bipolaron problem at arbitrary values ofα, the Feynman variational
approach [26] is the most appropriate method. The trial Lagrange function is written as

Ltr = 1

2

3∑
i=1

∑
n=1,2

[
mẋ2

i,n +MẊ2
i,n − k(xi,n −Xi,n)2 − k′(xi,n −Xi,n̄)2

]
+

3∑
i=1

K(xi1− xi2)2 −
∑
n=1,2

W(rn) (8)
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where theXin are coordinates of thenth fictitious particle. This model imitates the interaction
of electrons with phonons and with each other by using elastic bonds as shown in figure 1. The
massM and the force constantsk, k′, K play the roles of variational parameters. Forn = 1,
n̄ takes the value 2, and forn = 2, n̄ is equal to 1. The potential wellU(r) in equation (6) is
simulated by a parabolic function:

W(r) = m�2

2

q∑
i=1

x2
i . (9)

M1

M2

e2e1

k

kk'

k'
K

Figure 1. A schematic diagram of the trial system which contains two electrons connected with
two fictitious particles through the elastic attraction and models the Coulomb interaction as the
elastic repulsion.

The basis of the Feynman variational method is the Jensen–Feynman inequality [26]:

〈exp(S − Str )〉Str > exp〈S − Str〉Str (10)

where the angular brackets denote averaging over electron paths:

〈G〉Str =
(

Tr
∫

Dr G[r] exp(Str )

)/(
Tr
∫

Dr exp(Str )

)
. (11)

Here S and Str are the electron action functionals obtained after integration over phonon
variables and over coordinates of fictitious particles, respectively. At low temperatures, the
variational bipolaron energy is calculated using the expression

Ebip = Etr − lim
β→∞

〈S − Str〉Str
β

(12)

whereEtr is the ground-state energy of the trial system with the Lagrangian (8);β = 1/kBT
is the inverse temperature.

The trial Lagrange function (8) consists of three independent parts:

Ltr =
3∑
i=1

Li.

Each partLi is a function of four variablesxi1, xi2,Xi1,Xi2. Let us introduce unified notation
for the coordinates of electrons and of fictitious particles:x̃i1 = xi1, x̃i2 = xi2, x̃i3 = Xi1,
x̃i4 = Xi2. It follows from the form of the trial Lagrangian (8) with equation (9) that the groups
of variablesx̃ij with different indicesi are dynamically independent of each other. They are
related to the normal variablesξij by the unitary transformation

x̃ij =
4∑

j ′=1

djj ′ξij ′ i = 1, 2, 3 (13)
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with 4× 4 matrices
∥∥djj ′∥∥ (j, j ′ = 1, . . . ,4). From the equations of motion for the group of

coordinates̃xij (j = 1, . . . ,4) with a fixedi, the eigenfrequencies are obtained:

ω2
j =



1

2

{(
1 +

M

m

)
v2 +�2 − (−1)j

√[(
1− M

m

)
v2 −�2

]2

+ 4
M

m
v4

}
j = 1, 2

1

2

{(
1 +

Mi

m

)
v2 +�2 − 2

K

m

− (−1)j

√[(
1− Mi

m

)
v2 −�2 + 2

K

m

]2

+ 4
(k − k′)2
mM

}
j = 3, 4

(14)

wherev2 = (k+k′)/M. The matrix elements of the unitary transformation (13) are as follows:

d2
11 =

ω2
1 − v2

2(ω2
1 − ω2

2)
d2

12 =
v2 − ω2

2

2(ω2
1 − ω2

2)

d2
13 =

ω2
3 − v2

2(ω2
3 − ω2

4)
d2

14 =
v2 − ω2

4

2(ω2
3 − ω2

4)

d2j ′ = sj ′d1j ′ d3j ′ = k + sj ′k′

M(v2 − ω2
j ′)
d1j ′

d4j ′ = sj ′d3j ′

sj =
{

1 j = 1, 2

−1 j = 3, 4.

(15)

Note that the Coulomb interaction gives a contribution to frequencies withj = 3, 4. It is easy
to see from equation (14) that under the conditions of strong confinement, the eigenfrequencies
ωj are determined mainly by the parameter�.

The action functionalsS andStr in equations (10)—(12) contain the potential energies
U andW, respectively. The shape of a real potentialU may differ from that of the model
quadratic potential (9), but the averaged difference〈U −W〉Str can be omitted as long as it is
small when compared with the rest of〈S − Str〉Str /β.

The averaging procedure in equation (12) is carried out by path integration and leads to
the following form of the variational bipolaron energy:

Ebip = 3B +C + P. (16)

Here the term 3B includes averaged kinetic energies of two electrons and of two ‘fictitious’
particles as well as the averaged potential energy of the elastic interaction of these four particles:

B = 1

2

4∑
j=1

ωj

(
1− ω

2
j −�2

ω2
j

d2
1j

)
− v. (17)

In equations (16), (17) and further on, Feynman units are used: ¯hω0 for energies;ω0 for
frequencies;Rp = (h̄/mω0)

1/2 for lengths.
The averaged potential energy of the Coulomb electron repulsion is

C = α

(1− η)π2
K2(0) (18)

and the averaged energy of the electron–phonon interaction is

P = − α
π2

∑
n=1,2

∫ ∞
0

dτ e−τKn(τ ) (19)
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where

Kn(τ ) =
∫ ∞
−∞

1

k2
exp

[−k2An(τ)
] 3∏
i=1

dki. (20)

The functionsAn(τ) are determined as follows:

rAn(τ) =
{∑
j=1,2

d2
1j

ωj

[
1− exp(−ωjτ)

]
+
∑
j=3,4

d2
1j

ωj

[
1 + (−1)nexp(−ωjτ)

]}
n = 1, 2.

(21)

In order to find the bipolaron energy, it is necessary to minimize the functionEbip given by
equation (16) over four independent variational parametersωj , j = 1, . . . ,4, which are used
instead of the massM and the force constantsk, k′,K.

The number of phonons in the bipolaron cloud is determined by the general expression
from reference [27]:

Nph =
〈

∂S

∂(h̄ω0)

〉
Str

(22)

which gives, in the case under consideration,

Nph = α

π2

∑
n=1,2

∫ ∞
0
Kn(τ )e−τ τ dτ. (23)

Calculations by means of equation (23) are performed using the results of minimization of the
bipolaron energy.

3. Bipolaron parameters

The following form for the variational bipolaron energy results from the general expression
(16):

Ebip = 3

2

4∑
j=1

ωj

(
1− ω

2
j −�2

ω2
j

aj

)
− 3v +

2α

(1− η) [πA2(0)]
1/2

− 2α√
π

∫ ∞
0

e−τ
∑
n=1,2

[An(τ)]
−1/2 dτ (24)

where the functionAn(τ), according to equation (21), is

An(τ) =
2∑
j=1

aj
1− exp(−ωjτ)

ωj
+

4∑
j=3

aj
1 + (−1)nexp(−ωjτ)

ωj
n = 1, 2

with coefficients

a1 = 1

2

ω2
1 − v2

ω2
1 − ω2

2

a2 = 1

2

v2 − ω2
2

ω2
1 − ω2

2

a3 = 1

2

ω2
3 − v2

ω2
3 − ω2

4

a4 = 1

2

v2 − ω2
4

ω2
3 − ω2

4

. (25)

A schematic representation of the different normal oscillations of the trial system is shown
in figure 2. As� tends to zero, the normal oscillation with the frequencyω2 transforms to
a translational motion withω2 = 0 of the bipolaron as a whole. Frequenciesω1, ω3, andω4

correspond to the internal degrees of freedom of the bipolaron. In particular, as follows from
equation (14 ), a normal oscillation with the frequencyω1 describes such a relative motion of
electrons and of fictitious particles in the case where both the distance between electrons and
that between fictitious particles do not change.
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ω1 ω2 ω3 ω4

Figure 2. A schematic representation of the normal oscillations of the trial system in a quantum
dot.

The phonon number in the bipolaron cloud is calculated using the expression

Nph = 2α√
π

∫ ∞
0
τe−τ

∑
n=1,2

[An(τ)]
−1/2 dτ (26)

which follows from equation (23). The radius of the bipolaron is defined as

Rbip =
√

1

3

〈
(r1− r2)2

〉
Str

(27)

and turns out to be

Rbip =
√

ω3ω4 + v2

2ω3ω4(ω3 + ω4)
. (28)

In the limiting case of a weak confinement, the expression in (24) tends to that known
from references [12, 13] for the variational energy of a 3D bipolaron. For a large radius of
the quantum dot and for a strong polaron coupling(α � 1), the bipolaron binding energy is
reduced to the form

W = W3D +
3

2α2R2

(
9π

2
− 1

ω̃3

)
(29)

whereW3D is the bipolaron binding energy in the bulk. The parameterω̃3 is determined (see
[28]) by

ω̃3 = 128

9π

[
1− ζ 2(U)

]3
ζ(U) = U

16α
+

1

2

√
2 +

(
U

8α

)2

. (30)

It can be shown that̃ω3 > 2/9π . Hence, a weak confinement leads to an increase of the
bipolaron binding energy when compared withW3D.

It is worth mentioning that in the opposite limit of a strong confinement, the bipolaron
binding energy of the ‘squeezed’ state (R � 1) is found to be negative:

W(R) = − 2αη√
π(1− η)R . (31)

Hence, this state is outside the region of bipolaron stability. As long as under strong 3D con-
finement the average distance between two electrons is small, the Coulomb repulsion exceeds
the phonon-mediated attraction. Consequently, in this caseW(R) is negative. With decreasing
R, the bipolaron binding energy initially rises (cf. equation (29)) and then falls (cf. equation
(31)); therefore it has a maximumWmax.
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4. Discussion of numerical results

The region with the Fr̈ohlich coupling constant ranging from 2 to 4 is chosen for the numerical
work in order to include the values ofα corresponding to some specific substances with small
η (for example, TiO2: α = 2.03, η = 0.035 [29]; TlCl: α = 2.56, η = 0.133 [30]; BaO:
α = 3.23,η = 0.118 [29]; LiBr: α = 4.15,η = 0.24 [30]). In order to compare the properties
of a bipolaron in quasi-linear structures in three and two dimensions with each other, cylindrical
and planar quantum wires are analysed (see figure 2).

In figures 3(a) and 3(b), graphs of the bipolaron binding energies in quantum dots are
represented for given values ofα andη. Numerical calculations show that, with strengthening
confinement, the bipolaron binding energyW(R) → 0 for η = 0, whereas forη 6= 0, this
function tends to a negative value determined by equation (31) atR � 1. Both figure 3(a)
and figure 3(b) demonstrate that a stable bipolaron in a quantum dot appears at a smaller value
of α thanαmin,3D = 6.8 andαmin,2D = 2.9. In the regionR < 1, with decreasing radius, the
functionW(R) passes through a maximum. In accordance with this behaviour ofW(R), the
critical valueαc(η, R) as a function ofR passes through a minimum in the regionR < 1 and
grows further with decreasingR at a fixedη 6= 0; see figure 4. For 06 η 6 0.02 this minimum
is lower thanαmin,2D, so the inequalityαc(η, R) < αmin,2D is obeyed for theR-values ranging
from 0.7 atη = 0.02 up to 2 atη = 0. Note that the positions of the minimaαmin on those

α=10

α=10

α=7α=7

α=5
α=5

α=3α=3
α=2

WW

R R

a) b)

η=0.01η=0

Figure 3. Plots of the binding energy of a bipolaron versus the radius of a quantum dot at different
values of the coupling constantα for η = 0 (panel (a)) andη = 0.01 (panel (b)).

η=0.02

η=0.01

η=0.00

R

α c

Figure 4. Plots of the critical value of the coupling constantαc versus the radius of a quantum dot
at different values of the parameterη.
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graphs are shifted to largerR-values relatively to the positions of the respective maximaWmax

as given by figures 3(a), 3(b).
At η = 0,αmin(R) increases monotonically with the radius. It follows from the comparison

of the αmin(R) values, calculated for a quantum dot, with those obtained for a cylindrical
quantum wire (see figure 2 of [20]) thatαmin,QD(R) < αmin,QW(R) at equal radii of the quantum
dot and of the quantum wire. So, the conditions of bipolaron stability aremore favourable in
a quantum dotthan in a cylindrical quantum wire.

Our treatment, both analytical and numerical, implies the existence ofWmax and ofαmin

for a quantum dot. This result is in contrast with that obtained in reference [25]. Bipolaron
parameters are calculated in reference [25] by the strong-coupling variational method; as
a consequence,W(R) is shown to diminish monotonically with decreasingR. As long as
W(R) → W3D for R → ∞, thenW(R) of reference [25] is always less thanW3D. This
assertion looks questionable when compared to the conclusion of the present work, that
confinement can enhance the bipolaron binding energy; when the radius of a quantum dot
is of the same order of magnitude as the polaron radius. It is found in the present paper and in
references [17–19] that confinement to two dimensions as well as to one dimension enhances
the bipolaron binding energy; moreover,W1D > W2D > W3D. Thus, in all known cases,
both the diminution of the confinement domain and the reduction of the dimensionality of the
structure lead to an increase of the bipolaron binding energy.

The dependence ofNph on the radius of a quantum dot is shown in figure 5. It is obvious
that the functionNph(R, α) monotonically increases with decreasingR owing to the growth
of the electron charge density. This behaviour arises because of the conditions of strong size
quantization, when the Coulomb repulsion practically does not influence the distribution of
the electron charge density.

RR

N
ph

N
ph

b)a)η=0 η=0.01

α
α
α
α
α

=10.0
=7.0
=5.0
=3.0
=2.0

α
α
α
α

=10.0
=7.0
=5.0
=3.00

Figure 5. The number of phonons in the bipolaron cloud as a function of the radius of a quantum
dot at different values of the coupling constant forη = 0 (panel (a)) andη = 0.01 (panel (b)).

The graphs ofRbip as a function ofR for a quantum dot are represented in figure 6(a)
(η = 0) and figure 6(b)(η = 0.01). For largeR, two different types of two-electron state can
be distinguished according to the value ofα. Forα 6 5, the correlation between electrons is
small, and the system consists of two weakly interacting polarons. On reducing the quantum
dot size, bends appear on the curves withα = 2, 3, 5. Those bends are more pronounced on
the graph withα = 5,η = 0. This feature confirms the fact that the confinement strengthening
stimulates the phonon-mediated attraction between electrons. In the same domain ofR, as
seen from the graphs in figures 3(a), 3(b), the binding energyW starts to increase rapidly
with decreasingR. For α > 7, there is a strong correlation of the motion of electrons in
the bipolaron, even in the absence of confinement. In this case, a decrease inR does not
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RR

R
bi

p

R
bi

p

a) b)

α=10.0
α=7.0
α=5.0
α=3.0
α=2.0

α=10.0
α=7.0
α=5.0
α=3.0
α=2.0

η=0 η=0.01

Figure 6. The bipolaron radius as a function of the quantum dot radiusR at different values of the
coupling constant forη = 0 (panel (a)) andη = 0.01 (panel (b)).

influenceRbip until R ' Rbip,3D. For small values ofR and for an arbitraryα, Rbip reduces
proportionally toR.

To summarize the results, the reduction of the quantum dot size strengthens not only
the efficiency of the electron–phonon interaction for each electron separately but also the
phonon-mediated attraction between electrons. As a consequence, the phonon numbersNph

in bipolaron clouds monotonically rise. The radiusRbip in a quantum dot experiences a direct
influence of the confinement. ForR < Rbip,3D, the bipolaron radius vanishes proportionally
to R. ForR > Rbip,3D, in the domain whereα ≈ αmin,3D, there is a sharp transformation of
the functionRbip(R). This transformation describes atransition from a 3D bipolaron to two
independent polarons whose radii are determined by the confinement. It is natural that for
largeR, the bipolaron characteristics reflect the well known difference between the regimes
of strong and weak electron–phonon coupling, but for smallR andαR < 1 this difference
disappears. Such a quantum state of two electrons can be referred to as a ‘squeezed’ bipolaron.

Technological possibilities for fabricating quantum dots of small radius are demonstrated
in references [31, 32], where CdSe nanocrystals of spherical shape withR ∼ 1 nm are
investigated.

5. Conclusions

The analytical and numerical analysis performed of the influence of confinement on the
bipolaron binding energy has shown that stable bipolaron states are possible even for
intermediate values ofα (α ∼ 2) and for not-too-small values ofη (η ∼ 0.1) in nanostructures
whose sizes are of the same order as the polaron radiusRp.
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